Gaussian Process Random Fields
نویسندگان
چکیده
Gaussian processes have been successful in both supervised and unsupervised machine learning tasks, but their computational complexity has constrained practical applications. We introduce a new approximation for large-scale Gaussian processes, the Gaussian Process Random Field (GPRF), in which local GPs are coupled via pairwise potentials. The GPRF likelihood is a simple, tractable, and parallelizeable approximation to the full GP marginal likelihood, enabling latent variable modeling and hyperparameter selection on large datasets. We demonstrate its effectiveness on synthetic spatial data as well as a real-world application to seismic event location.
منابع مشابه
Extremes of a Class of Non-homogeneous Gaussian Random Fields
This contribution establishes exact tail asymptotics of sup(s,t)∈E X(s, t) for a large class of non-homogeneous Gaussian random fields X on a bounded convex set E ⊂ R, with variance function that attains its maximum on a segment on E. These findings extend the classical results for homogeneous Gaussian random fields and Gaussian random fields with unique maximum point of the variance. Applicati...
متن کاملGaussian Limit for Determinantal Random Point Fields
We prove that, under fairly general conditions, properly rescaled determinantal random point field converges to a generalized Gaussian random process.
متن کاملNumerical Simulation of Non-Gaussian Random Fields
The non-Gaussian random fields are used to modelling some dynamic loads generated by wind turbulence, ocean waves, earthquake ground motion etc. These fields also represent the uncertain properties of different materials (reinforced concrete, composite, soils etc.). This paper presents some methods and the corresponding algorithms to the numerical simulation of stationary non-Gaussian random fi...
متن کاملSimulation of Sample Paths of Non Gaussian Stationary Random Fields
Mathematical justifications are given for a simulation technique of multivariate nonGaussian random processes and fields based on Rosenblatt’s transformation of Gaussian processes. Different types of convergences are given for the approaching sequence. Moreover an original numerical method is proposed in order to solve the functional equation yielding the underlying Gaussian process autocorrela...
متن کاملProperties of local-nondeterminism of Gaussian and stable random fields and their applications
— In this survey, we first review various forms of local nondeterminism and sectorial local nondeterminism of Gaussian and stable random fields. Then we give sufficient conditions for Gaussian random fields with stationary increments to be strongly locally nondeterministic (SLND). Finally, we show some applications of SLND in studying sample path properties of (N, d)-Gaussian random fields. The...
متن کاملGaussian Fields and Gaussian Sheets with Generalized Cauchy Covariance Structure
Abstract. Two types of Gaussian processes, namely the Gaussian field with generalized Cauchy covariance (GFGCC) and the Gaussian sheet with generalized Cauchy covariance (GSGCC) are considered. Some of the basic properties and the asymptotic properties of the spectral densities of these random fields are studied. The associated self-similar random fields obtained by applying the Lamperti transf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015